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ABSTRACT
Web search engines are traditionally evaluated in terms of
the relevance of web pages to individual queries. However,
relevance of web pages does not tell the complete picture,
since an individual query may represent only a piece of the
user’s information need and users may have different infor-
mation needs underlying the same queries. We address the
problem of predicting user search goal success by modeling
user behavior. We show empirically that user behavior alone
can give an accurate picture of the success of the user’s web
search goals, without considering the relevance of the docu-
ments displayed. In fact, our experiments show that models
using user behavior are more predictive of goal success than
those using document relevance. We build novel sequence
models incorporating time distributions for this task and
our experiments show that the sequence and time distribu-
tion models are more accurate than static models based on
user behavior, or predictions based on document relevance.

Categories and Subject Descriptors
H.3.5 [Information Search and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Algorithms,Experimentation,Measurement

Keywords
search engine evaluation, user satisfaction, user behavior
models, query log analysis, search sessions

1. INTRODUCTION
Web search engines are traditionally evaluated in terms of

the relevance of web pages to individual queries. However,
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users modify and reformulate their queries [22, 11] and can
have complex information needs, so an individual query may
represent only a piece of the user’s information need or goal.
In previous work it has been shown that relevance of web
pages to queries is correlated with user search success [10].
However, relevance of web pages does not tell the complete
picture, since queries can be ambiguous in many ways, and
users can have different information needs underlying the
same queries.

Consider two users searching for “free clip art” to embel-
lish a document. They each see the same set of web search
results for this query, which have the same fixed relevance or
DCG [12]. The first user finds the kind of clip art she is look-
ing for on the first page of results, clicks on it, copies it into
her document and her search goal is successful. However, the
second user has something else in mind. After seeing the re-
sults, he reformulates his query to “easter religious clip art”,
reformulates it again and ultimately abandons his search.
This search goal is unsuccessful, despite starting with the
same query, with the same DCG.

In this work, we look at ways to predict whether a user’s
particular search goal is successful. We consider features
which take into account the entire pattern of user search
behavior, including query, click and dwell-time as well as
number of reformulations. It is notable that once trained,
our techniques require no editorial judgments, and thus can
be automated to add to standard metrics for search engine
evaluation.

Our contributions include (1) a method of evaluating search
engines that takes into account the entire pattern of the user
experience during the multiple queries and clicks that span a
search (2) a fully automated evaluation technique that does
not require multiple impressions of each query-url pair (3) a
model of usage behavior which integrates time in a natural
way, which is highly predictive of user search goal success
(4) empirical validation that this type of model is more pre-
dictive of user search goal success than editorial relevance
judgments on the results for the first query in the session.

Our problem definition, data, and the labeling process we
are trying to match are described in Section 2. Section 3
discusses the related work. Section 4 describes how user be-
havior is used as a predictor of a successful search. Experi-
ments and comparison against other methods are presented
in Section 5. In Section 6 we discuss results and give exam-
ples of typical successful and unsuccessful search patterns,
as well as comparison of transition probabilities in successful
and unsuccessful searches.
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Time Query # Clicks Avg. Dwell Time
t1 sea bass in oven 1 Short
t2 baked sea bass 1 Short
t3 baked sea bass recipe 6 Long

Table 1: Example of a Successful Goal

Time Query # Clicks Avg. Dwell Time
t1 gauage mod for rfactor 0 NA
t2 gauges for rfactor 1 Short
t3 new gauges for rfactor 0 NA
t4 gauges mod for rf 0 NA
t5 new tacks for rfactor 1 Short
t6 rfactor gauge plugin 0 NA

Table 2: Example of an Unsuccessful Goal

2. USER SEARCH GOAL SUCCESS
We consider a user’s search sequence of one or more queries

with the same atomic information need to be a goal, as de-
fined by Jones and Klinkner [14]. When we examine the
different actions performed by the user during the goal, we
can distinguish successful and unsuccessful goals. Examples
of a successful and an unsuccessful goal are shown in Table
1, and Table 2 respectively.

2.1 Data
Our data consists of a random sample of 1000 user sessions

from the Yahoo! search engine engine during a week in April
2007. Each user session was a three days long, and included
all queries, search result page impressions and clicks on all
results on the search result page from that user in the time-
frame. The three day time period was arbitrary, but deemed
long enough to capture extended search patterns for some
users. The editorial team were then instructed to examine
each session and “re-enact” the user’s experience.1

2.2 Editorial Guidelines

Definition 1. A search goal is an atomic information
need, resulting in one or more queries.

A goal can be thought of as a group of related queries to
accomplish a single discrete task. The queries need not be
contiguous, but may be interleaved with queries from other
goals (e.g., a user who is both looking for work-related in-
formation and information for the evening’s entertainment).

The editors identified the goal of each query and labeled
each query with a goal number. The data contained a total
of 2712 distinct goals over approximately 5000 queries.

Success of a goal was judged on a five point scale: defi-
nitely successful, probably successful, unsure, probably un-
successful, and definitely unsuccessful. The editors used
information about landing page content and how well it
matched query terms as well as the actual sequence of queries
in a goal (e.g. whether the user seemed to be increasing in
specification) as well as the click patterns on search results
and suggestions such as spelling and related searches. Edi-

1The user was designated with an anonymous identifier, and the
annotation was done in accordance with Yahoo!’s privacy policy,
with no information used to map the query stream to a particular
user.

tors had a training period in which labels were discussed to
ensure consistency.

Re-enacting the user’s search in this way and attempting
to estimate their success in finding their desired information
is not without bias. The benefit to the editors of judging
success at the session level is that they have a great deal
of context to help them determine ambiguous cases. In the
case of success judged for a single query, or pageview, the
editor doesn’t have this context at all, so interpreting the
intent of the user becomes much more difficult.

For each transition from one-query to the next within
a goal, the editors labeled that transition as a generaliza-
tion, specialization, parallel move or same-meaning. For
one query per user-session, the editors also labeled docu-
ments with relevance judgements on a five-point scale with
the values (Perfect, Excellent, Good, Fair, Bad).

2.3 Problem Definition
Assume we have a stream of queries being submitted by

users to a search engine. In response to each query, a Search
Results Page (SERP) is displayed to the user. The search
results page presents web search results, sponsored search
results and other results like spelling suggestions and related
searches. The user may then click on 0 or more results and
then either end the session or submit another query.

Each user session may consist of one or more goals, where
a goal is defined as an atomic information need that may
result in one or more queries. So given a search goal, our
objective is to predict whether that goal ended up being suc-
cessful or not. In order to convert the editorial judgments to
a binary classification task, we treated“definitely successful”
and “probably successful” goals as the positive class, and all
other goals as the negative class.

In this work we assume that the partitioning of sequences
of queries and their associated clicks into goals has been
carried out a pre-processing step. We use the editorially as-
signed goal labels for this. We could also use automatic goal
boundary identification following the methods proposed in
Jones and Klinkner [14] which report accuracy of around
92%. By using oracle editorial goal labels we can examine
goal success prediction decoupled from the goal identifica-
tion task.

3. RELATED WORK
Here we describe work on evaluating the quality of search

results on a per-query basis, at the level of tasks and ses-
sions, modeling user web usage patterns, and finally work
on identifying session and goal boundaries.

3.1 Estimating Query Level Relevance
State of the art measurement of query result-set relevance

for web search uses relevance metrics such as discounted cu-
mulative gain (DCG) [12]. DCG can be calculated based
on manual judgments of the relevance of documents in the
search result list to individual queries, or estimated using
models derived from user click behavior (eg. [4, 1, 5]. Query
document-relevance judgments allow the data to be reused,
and lend themselves to use as training data for ranking. The
problem with this approach is that query-document rele-
vance does not always mean user satisfaction. An individ-
ual query may represent only a piece of a user’s information
need. In addition, it has been shown that users can sat-
isfy their information needs even with a poorly performing
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search engine, by exerting extra effort with query formula-
tion and reformulation [23].

Piwowarski et al. [18] describe a model that uses Bayesian
Networks to predict the relevance of a document in ab-
sence of document content models. Unlike previous work
on query-url relevance, which require tens or hundreds of
instances of a query-url pair to learn a relevance score, Pi-
wowarski et al’s work does allow the prediction of relevance
even for queries issued only once or documents viewed only
once. This modeling of user behavior patterns and times is
close to our approach, but is modeled in an unsupervised
fashion, and used to predict document relevance instead of
user search goal success. As we will show in Section 5.2,
even editorially labeled query url relevance is not as good a
predictor of goal success as user behavior.

3.2 Task and Session Level Evaluation
Session Discounted Cumulative Gain (sDCG) [13] applies

a discount to relevant results found in response to queries
later in the user’s search session. This takes into account
the multiple queries that can be part of a search goal, but
still requires manual relevance judgments. Our approach of
predicting goal success using user actions both takes into ac-
count the entire process of the search goal, and once trained
can also be fully automated to evaluate a search engine with-
out requiring manual relevance judgments.

Huffman and Hochster [10] address a similar task to ours.
The purpose of their study is to look into the correlation be-
tween user satisfaction and simple relevance metrics. They
report a strong correlation between the two attributes and
construct a model to predict user satisfaction using the rel-
evance of the first three results and the query type. We will
show in Section 5.2 that our trained Markov model of user
behavior outperforms their model using editorial judgments.
Xu and Mease [24] show that total task completion time is
correlated with user satisfaction for difficult tasks, and that
variation in time across users is greater than within users.
We model the total time span of a task in our experiments
and see that for our user tasks, which are randomly selected
from real online user activity and span a variety of difficulty
levels, our Markov model incorporating detail of transitions
and time provides significant improvements. Downey et al
[6] propose models of the sequence of actions using Bayesian
networks, and include both actions and time. Our work dif-
fers in that we represent time as a probability distribution,
and use the models to predict user search goal success. Fox
et al [7] is the work most similar to ours. They attempt
to predict user-annotated levels of satisfaction using a va-
riety of implicit measures based on search behavior. They
propose gene patterns to summarize the sequences of user
behavior. Our work generalizes these patterns by represent-
ing sequences in a Markov model, allowing representation
of transition probabilities, as well as time distributions over
the transitions.

Radlinski et al. [20] look at predicting relative search en-
gine performance using metrics including abandonment rate,
reformulation rate and time to first click, and find that these
metrics do not perform as well as interleaving on their small
search engine dataset. The metrics they consider aggregate
over all users of a search engine and do not consider the in-
dividual search goal. In Section 5.1 we consider analogous
features including number of queries in a goal and time to
first click as part of a list of static features, and show that

our Markov model of user actions out-performs these at pre-
dicting user goal success. Our fine-grained prediction of goal
success allows us both to evaluate search engine performance
at a finer-grained level, for individual or groups of users or
starting queries, as well as allowing us to compare pairs of
search engine in terms of goal success rate and measures of
user effort such as number of queries per successful goal.

Jung et al. [15] show that considering the last click of a
session may be the most important piece of information in
relating user clicks to document relevance. We consider this
feature as one of our predictors in section 5.1 and again show
that it is not as good as the Markov model in predicting goal
success. The dwell time of the last click of a session is rep-
resented as part of our time-based Markov model described
in Section 4.5.

3.3 Modeling User Search Behavior
Boldi et al. use a query-flow graph, a graph representa-

tion of query reformulations in query logs [2]. They use this
model for finding logical session boundaries and query rec-
ommendation. Agichtein et al. show that incorporating user
behavior data can significantly improve ordering of top re-
sults in real web search setting [1]. Borges and Levene model
the user navigational patterns as a probabilistic grammar [3].
They use an N-gram model where the next page visited by
the user is affected by the last N pages browsed. Sadagopan
and Li find atypical user sessions by detecting outliers using
Mahalanobis distance in the user session space [21]. These
papers concentrate on using the query logs as a data source
for learning about the world or to improve the search en-
gine, whereas we focus on evaluating the success of the user
search goal itself.

3.4 Identifying Search Task Boundaries
The problem of classifying the boundaries of the user

search tasks within sessions in web search logs has been
widely addressed before. This task is an important pre-
processing step for out work as we need to find the bound-
aries between goals before we can predict whether they are
successful or not. Early models used time and word and
character overlap (eg. [17, 19]), but were on small data sets
or did not compare to ground-truth. Jones and Klinkner ad-
dress the problem of classifying the boundaries of the goals
and missions [14], and a similar problem has been addressed
by Boldi et al [2]. For the experiments in this paper we use
editorially labeled goal boundaries, but we could substitute
the automatic methods described in these papers which have
been reported at around 92%.

4. APPROACH
In this section, we describe a model which, given a search

goal, predicts whether it is successful or not. To do this we
extract patterns describing the user behavior for each search
goal. We then use those patterns to build two Markov Mod-
els, describing user behavior in case of successful, and un-
successful, search goals. Given a new search goal, we extract
the corresponding pattern and estimate the likelihood of this
pattern being generated from the two models. We then com-
pare the likelihood of the test goal under the two models to
decide if it is a successful or unsuccessful goal. This model
does not take time between user actions into consideration.
In Section 4.5, we describe a method for combining time
with user behavior to better predict goal success.
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4.1 Goals as a Sequence of Actions
Each goal consists of a set of queries and zero or more

clicks on search results for each query. A user search goal can
be also represented by an ordered sequence of user actions
along with the time between those actions.

Given a set of actions a1..an, a goal can be defined as:

G = 〈START, 〈a1, t1〉, . . . , 〈an, tn〉, END〉

where START , and END are the start and end states re-
spectively. a1, . . . , an ∈ A = {Q,SR,AD,RL, SP, SC,OTH}
is the possible set of user actions. t1, . . . , tn ∈ N is the time
between actions.

The following types of actions could appear in a goal:

• START: the user starts a new goal (manually labeled
in our data)

• A query (Q)

• A click of any of the following types:

– Algorithmic Search Click (SR).
– Sponsored Search Click (AD).
– Related Search Click (RL).
– Spelling Suggestion Click (SP).
– Shortcut Click (SC).
– Any Other Click (OTH), such as a click on one of

the tabs.

• END: the user ends the search goal (manually labeled
in our data)

Most of the action types are self explanatory except for
the related search and the shortcut clciks. A related search
click is a click on a query similar to the user’s query. The
search engine lists similar queries when other people have
done searches similar to the user’s search. A shortcut is a
quick way to get to the information the user wants. It au-
tomatically appears when it is relevant to the user’s search.
Some example of shortcuts are images, videos, news,...etc.

Incorporating actions like related search and shortcut clicks
could be very useful for assessing the utility of such impor-
tant search engine features by looking at how their usage
correlates with the overall goal success.

Consider the following example: A user enters the query
“guess”, then 4 seconds later he clicks on the related search
suggestion “guess watches”, after one more second, the user
clicks the first search results, after another 53 seconds, the
user clicks on the third result and after 118 seconds, the goal
ends. This user goal can be represented by the following
sequence of actions: Q 4s RL 1s SR 53s SR 118s END

4.2 Model Language Variations
Some actions can also be associated with a number. For

example, Q could be replaced by {Q} × N to distinguish
the first query from the second query and so on. This can
be defined at several levels of granularity. For example, we
may decide to only distinguish the first query from the rest.
Similarly, we can do the same by replacing SR with {SR}×
N to distinguish clicks on different positions. The number
could represent the result position, the number of the page
at which it appeared or any other custom definition.

Given a higher-order model, the example given above would
be represented by the following sequence of actions, which
distinguishes the click on the first-ranked search result from
the click on the third-ranked one: Q 4s RL 1s SR1 53s SR3

118s END

(a) The model given only 1 training instance

(b) The model given only 2 training instances

Figure 1: Sequences of actions could represent a
path in a graph

4.3 Building the Model
Each sequence of actions represents a chain or a path in

a graph. The sequence of actions from the previous exam-
ple can be represented as a path in a graph as shown in
Figure 1(a). As we have more sequences representing more
goals, the graph could evolve as shown in Figure 1(b).

This graph could be defined as G = (V,E,w) where:

• V = {Q,SR,AD,RL, SP, SC,OTH} is the set of pos-
sible user actions during the goal.

• E ⊆ V × V is the set of possible transitions between
any two actions.

• w : E → [0..1] is a weighting function that assigns to
every pair of states (si, sj) a weight w(si, sj) repre-
senting the probability that we have a transition from
state si to state sj .

This graph simply represents a Markovian model of the
user behavior during goals. The state space of the Markov
model is the set of actions and the transition probability be-
tween any two states si, and sj is estimated using Maximum
Likelihood estimation as follows:

Pr(si, sj) =
Nsi,sj

Nsi

where Nsi,sj is the number of times we saw a transition from
state si to state sj , and Nsi is the total number of times we
saw state si in the training data.

4.4 Predicting Goal Success
We split our training data into two splits; the first con-

taining all successful goals and the second containing all un-
successful goals. Given the methodology described in the
previous section, we build two Markov models. The first
model Ms characterizes the user behavior in successful goals,
and the second model Mf characterizes the user behavior in
unsuccessful goals.
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Figure 2: Time distributions are estimated for each
transition

Figure 3: Time distributions of SR → Q transitions
for successful and unsuccessful search goals.

Given a new user goal, we can use the two models to esti-
mate the log likelihood that this action sequence was gener-
ated from both models. Given a model M , and sequence of
actions S = (S1, S2, . . . , Sn), the probability of this action
sequence being generated from M is:

PrM (S) =

nY
i=2

Pr(Si|S1, . . . , Si−1) =

nY
i=2

W (Si−1, Si)

where n is the number of actions in the sequence, and W is
the probability transition function.

The log likelihood is then defined as:

LLM (S) =

nX
i=2

W (Si−1, Si)

and goal success is defined as:

Pred(S) =

(
1 if

LLMs (S)

LLMf
(S)

> τ ,

0 otherwise.

where S is the goal’s sequence of actions, LLMs(S) is the
log likelihood of the goal given the success model, LLMf (S)
is the log likelihood of the goal given the failure model and
τ is a threshold that is usually set to 1.

4.5 Adding Time to the Model
So far our model does not take transition times into con-

sideration. Time between actions is a very important predic-
tor of success. For example, it is widely believed that long
dwell time of clicks is an important predictor of success. It

has also been shown that the time to first click is correlated
with search success [20].

We assume that there is a distinctive distribution that
governs the amount of time the user spends at each tran-
sition. The distribution governs how much time the user
spends at state Si before moving to state Sj for each possi-
ble transition Si → Sj . The distribution at each transition
is estimated from the training data. We collect all transition
times for all goals from the training set for each transition
and use them to estimate the time distribution for that tran-
sition as shown in Figure 2.

The first step is selecting the parametric form of the time
distributions. The gamma distribution is a rich two parame-
ter family of continuous distributions. It has a scale param-
eter θ, and a shape parameter k. If k is an integer, the dis-
tribution represents the sum of k independent exponentially
distributed random variables [9]. The gamma distribution is
frequently used as a probability model for waiting times [9].

The probability density function of the gamma distribu-
tion can be expressed as:

f(x; k; θ) = xk−1 e
−x/θ

θkΓ(k)
for x, k, θ > 0 (1)

Given N independent and identically distributed obser-
vations (x1, . . . , xN ) for the transition times between two
states Si, and Sj ,, the likelihood function is:

L(k, θ) =

NY
i=1

f(xi; k, θ) (2)

Substituting 1 in 2, and finding the maximum with respect
to θ, we get:

θ̂ =
1

kN

NX
i=1

xi

Finding the maximum with respect to k, we get:

ln(k)− ψ(k) ≈ 1

k

„
1

2
+

1

12k + 2

«
θ̂ =

1

kN

NX
i=1

xi

which can be solved numerically.
We again split our training data into two splits; the first

containing all successful goals and the second containing all
unsuccessful goals. We then estimate the gamma distribu-
tions parameters for every transition once in each model.
Given a new goal, we estimate the likelihood that the tran-
sition times have been generated from the success model
and the likelihood that they have been generated from the
failure model. The ratio of the two likelihoods can then be
used as feature, along with the the likelihood ratio from the
sequence models, to predict success. Our hypothesis is that
some transitions will have different time distributions for
success and failure models. Hence the ratio of the likelihood
of the transition times could be used as a predictor of suc-
cess. Figure 3 compares the estimated time distributions for
the transition time between a search result click and a query
submission. We see from the figure that users tend to spend
more time on search results in successful goals which agrees
with previous research that shows that long dwell time on a
click is an indicator of a good click. We contrast this with
the short times users tend to spend on search results in the
case of unsuccessful goals where they quickly go back and
rewrite the query.
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5. EXPERIMENTS
Our evaluation data consisted of 2712 goals obtained from

a commercial search engine’s query log. Human editors were
instructed to classify goals as either successful or not as de-
scribed in Section 2.2. We used Gradient Boosted Decision
Trees (GBDT) as a classifier [8]. We used 10 fold cross val-
idation for all tests. We evaluate our results in terms of
Precision, Recall, F-measure, and Accuracy. Statistical sig-
nificance was tested using a 2-tailed paired t-test.

We compare our Markov model method to several other
methods of goal success prediction. The first baseline poses
the problem as a classic machine learning problem where
a set of static features are used to predict success (Section
5.1). The second baseline uses query-url relevance (DCG),
similar to [10], to predict goal success (Section 5.2). We show
that the Markov model out-performs both of these baselines.

5.1 Static Features Based on User Search
Behavior

Our first baseline poses the problem as a classic machine
learning problem where we come up with a set of features
and train a classifier using them. We tested a number of
features, and those which performed best are described here:

Features
Number of queries during goal
Number of clicks during goal
Number of clicks on sponsored results during goal
Number of clicks on next page during goal
Number of clicks on spell suggestion during goal
Number of clicks on also try during goal
Number of clicks on shortcut during goal
Maximum time between clicks during goal
Minimum time between clicks during goal
Average time between clicks during goal
Time span of goal
Average time to first click during goal
Average dwell time

An important feature that we consider is the dwell time.
Dwell time of a click is the amount of time between the click
and the next action (query, click, or end). We calculate the
dwell times for all clicks during goal and use the maximum,
minimum, and average dwell times as features to predict
success.

Figure 4 compares the precision-recall curves for the static
features classifier and the proposed Markov model likelihood
based method (which we will refer to simply as “MML”).
Table 3 shows the precision, recall, f-measure, and accuracy
for the static features classifier, the dwell time classifier and
the proposed method. Thresholds were set by the gradient
boosted decision tree classifier. We notice that the dwell
time features are doing well compared to the static features.
The performance we get by using them is comparable to that
of using all static features. We also notice that the Markov
model method significantly outperforms the static features
and the dwell time classifiers. All measures are considerably
improved. The accuracy improved by more than 6 points or
9% of the static feature classifer accuracy.

The Markov model action sequence model has several ad-
vantages over the static features classifier. Both models try
to describe the behavior of users during search. However,
the static features classifier uses aggregated features describ-
ing the user behavior collectively. While, this is simple and
easy to compute, it ignores a lot of the details inherent in

Figure 4: Precision-Recall Curves for Markov Model
Likelihood (MML) and static features classifiers.

Precision Recall F1 Accuracy
Static Features 78.0 89.5 83.3 74.1
Dwell Time 76.1 93.3 83.8 73.2
Markov Model (MML) 83.5 91.8 87.5 80.4
MML+Static 81.7 93.3 86.5 79.9
MML+Click Pos 84.2 92.2 88.0 81.5
MML+Time 84.2 93.4 88.6 82.1
MML+Click Pos+Time 83.6 94.4 88.7 82.2

Table 3: Precision, Recall, F1, and Accuracy for
Static Features, Markov Model, and Markov Model
+ Time Classifiers. Each set of results separated by
horizontal bars has statistically significantly higher
accuracy than the set above it.

the user behavior. On the other hand, the Markov model
action sequence approach gives a more accurate picture of
the user behavior. For example, the static features clas-
sifier uses the number of clicks of different types per goal
to predict success. While this could be helpful, it ignores
the characteristics of each click and the transitions to/from
the clicks. For example, a search click followed by a query
rewrite might be quite different from a search click followed
by another search click.

We also tried using the the score we get from the MML as
a feature, adding it to the static features. The performance
of that classifier is shown in Table 3. We see that we did
not get any improvement when we added the static feature
to the MML feature. We believe that modeling the user
behavior captures all the information captured by the static
features and more.

5.2 Relevance based Prediction
Huffman and Hochster [10] show that there is a reason-

ably strong correlation between user satisfaction and rele-
vance metrics. In this section, we compare our approach to
a method based on [10]. They use the relevance of the first
query in a goal to predict search success. They use a simple
position-weighted mean which comes from the discounted
cumulative gain (DCG) [12] family of measures. Given rel-
evance judgments on a five-point scale, they scale them to
lie between 0 and 1 and define their aggregate measure as:
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Relevance =
Rpos1 +Rpos2/2 +Rpos3/3

1 + 1
2

+ 1
3

(3)

where Rpos1,Rpos2, and Rpos3 are the relevance judgments
between 0 and 1 for the first three results.

We implemented DCG in this fashion in order to com-
pare to their results. Other more standard implementa-
tions of DCG use a log weighting on rank, relevance weight-
ings which weight “Perfect” and “Excellent” documents more
highly, and can incorporate results to arbitrary ranks, though
DCG at ranks 1, 3 5 and 10 are all commonly used. We also
implemented DCG in a more standard form as described in
[12]:

DCGp = rel1 +
X
i=2

p
reli
log i

where reli is the relevance of result at position i on a five-
point scale.

We compare the performance of our method to the rele-
vance (DCG) based classifier using 10 fold cross-validation
on a subset of the data for which we have query-url relevance
judgments by human editors - which had 607 goals. Figure 5
compares the precision-recall curves for the relevance (DCG)
based classifier and the action sequence Markov model like-
lihood based method. Table 4 shows the precision, recall,
f-measure, and accuracy for the MML method and the two
relevance classifiers, based on Equation 3 and DCG [12].
It also shows the same measures for a classifier combining
the MML method and DCG. We notice that the two rel-
evance based metrics perform pretty much the same. The
different is not statistically significant. We also notice that
the Markov model method outperforms the relevance based
method at all operating points on the precision-recall curve
except for the case of very low recall. Precision is improved
by almost 6 points, however recall decreased by a single
point. The accuracy improved by by more than 5 points
or 6.5% of the relevance based classifer accuracy. When we
combined the MML method with DCG we did not see any
statistically significant improvement.

Although relevance is a good predictor of success, it does
not tell the complete picture, since an individual query may
represent only a piece of the user’s information need and
users may have different information needs underlying the
same queries. On the other hand, directly modeling user
behavior is a better predictor of success because it is based
on personal assessment of the utility of the returned results
from the user prospective.

We had a closer look at the goals where the relevance
based classifier failed, and the Markov model approach suc-
ceeded at accurately predicting whether the goal was suc-
cessful or not. In the first example, the user entered the
query “furniture auctions”. The relevance judgments of the
first three results are “Excellent”, “Good”, and “Good” re-
spectively, for “furniture auctions” for people wanting to buy
furniture. From the relevance point of view, the goal seemed
to be successful. However, the user was actually intending
to sell furniture in auctions; rewriting the query to “sell to
furniture auction” to reflect this intent and the user ended
up failing to find what he wanted. On the other hand, the
behavior of the user conformed to the behavior character-
ized by the user failure model and the ratio of the likelihood
of his actions sequence being generated from the success and
failure models clearly indicated that he was not successful.

Figure 5: Precision-Recall Curves for Markov Model
Likelihood (MML) and Relevance (DCG) based Pre-
diction.

Precision Recall F1 Accuracy
Relevance (Eqn. 3) 84.2 93.3 88.4 80.2
DCG 84.7 91.0 87.6 79.1
Markov Model 89.8 92.3 91.1 85.2
Markov Model + DCG 88.7 94.1 91.3 85.4

Table 4: Precision, Recall, F1, and Accuracy for Rel-
evance(Eqn. 3), DCG, Markov Model and Markov
Model + DCG classifiers, cross-validated on the sub-
set of 607 goals for which we have query-url rele-
vance judgments.

A second example illustrates a case where the relevance
of the first 3 results is not quite indicative of the search suc-
cess. In this example, the user entered the query “homes for
sale by owner in Pembroke Pines”. The relevance judgments
of the first three results are “Bad”, “Bad”, and “Fair” respec-
tively which results in the goal being labeled as unsuccessful
by the relevance based model. However, this prediction is
incorrect because the user ended up finding what he was
looking in the result at position 11. If you increase the
number of results included in the relevance metric to cover
result number 10, it will not have a significant effect on the
overall metric. On the other hand, the goal was correctly
predicted as successful by the behavior model as the user be-
havior greatly conformed to the behavior characterized by
the success model.

5.3 Adding Time
The experiments we have described so far only use the

sequence of user actions without taking time into consider-
ation. We fit a gamma time distribution for each transition
for both the successful and the unsuccessful models as de-
scribed in Section 4.5.

Figure 6 compares the precision-recall curves for the Markov
model likelihood based method with and without time. Ta-
ble 3 shows the precision, recall, f-measure, and accuracy
for the two methods. We notice that adding time improves
precision, recall, and accuracy. The gain in accuracy we
get from adding time to our model is around 2%. We see
that using time alone is surprisingly good (Figure 6). It is
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Figure 6: Precision-Recall Curves for Markov Model
Likelihood (MML) and Markov Model Likelihood
with Time.

much better than using the static features baseline described
above. We also see that using time alone is even better than
the action sequence MML model in the low recall condition.
However, the Markov action sequence model is better for
moderate and high values of recall. Combining both models
gives us a classifier that is better than both models.

5.4 Other Experiments
In this section we describe several other experiments that

we performed. Some of those experiments yielded negative
results, some yielded positive results and the rest left the
performance intact.

In the first set of experiments, we varied the Markov model
language. First we replaced the single query state Q with
other states to distinguish the first query from the second
query and so on. The difference in performance due to this
change was not statistically significant. Another hypothesis
is that the different types of query transitions might have dif-
ferent meanings for distinguishing successful from unsuccess-
ful goals. Hence, we distinguished the starting query from
a reformulation to generalize, specialize, use a parallel move
or same-meaning (using the editorial labeling described in
Section 2.2), for a total of five query states. Again, the differ-
ence in performance due to this change was not statistically
significant. We also tried replacing the single search result
click state with several other states to distinguish clicks at
different positions. We tried different variations of this mod-
ification. We tried adding the click position or the page po-
sition for different page sizes. We get the best performance
when we model the rank of the clicked results in increments
of 5. For example, a click on one of the first 5 results will be
mapped to the state SR1−5. A click on one of the results at
positions from 6 to 10 will be mapped to the state SR6−10

and so on. Figure 7 compares the precision-recall curves for
the proposed Markov model likelihood based method with
and without search result positions. We get a slight improve-
ment in performance due to this modification. We believe
this happens because the position of the clicked result is a
proxy for result relevance, and user behavior could change
after a search result click according to whether the result
was relevant.

Figure 7: Precision-Recall Curves for Markov Model
Likelihood (MML) and Markov Model Likelihood
with click position included in the model language.

First order Markov models assume that the next state
is only dependent on the present state. To validate this
appropriateness of this assumption on our data, we trained
higher order Markov models on the data and compared the
performance to first order models. We trained second order
and third order Markov models and the performance ended
up being degraded

In general there is a trade-off between the complexity of
the model and the amount of data available for training. For
the amount of training data we have right now, it seems that
first order models are the best fit. We even tried training
a second order model with back off to first order but the
difference in performance was statistically insignificant. It
would be very interesting to increase the size of the train-
ing dataset and observe the effect of this increase on the
performance of the higher order models.

We also tried adding query and query-url related features
to the model. We used 6 months of query log data and
calculated the number of impressions for each query. We
also calculated, for each query-url pair, the number of times
the url received the first and last click, the first but not last
click, the last but not first click, or neither the first nor the
last click. We added those features to the Markov model
likelihood ratio feature described earlier but we did not see
any statistically significant improvement.

6. DISCUSSION
It is interesting to observe the transition probabilities

learned in the Markov models for successful and unsuccess-
ful goals. In Table 5 we see the odds ratio of transition
probabilities from query to other actions in the successful
goals compared to unsuccessful goals. We see that in suc-
cessful goals users are twice as likely to click on shortcuts,
and nearly twice as likely to click on a search result. Users
are more likely to click on spelling suggestions and to issue
a new query without clicking on any search results in un-
successful goals. Unsuccessful goals are ten times as likely
to end with no clicks of any kind, that is with a transition
from the query to the end-state, which is also called an aban-
doned query. Abandonment alone is not a perfect predictor
of document relevance or goal success, since many queries

228



Action following query Odds-ratio
SC 2.0
SR 1.8
RL 1.2
SP 0.9
Q 0.5

OTH 0.3
END 0.1

Table 5: Odds-ratio of transitions from query to
other actions in successful goals, compared to un-
successful goals.

Action leading to end Odds-ratio
SR 1.5
SC 1.2

OTH 1.0
RL 0.7
Q 0.1

Table 6: Odds-ratio of transitions to end from other
actions in successful goals, compared to unsuccessful
goals.

can be satisfied with document snippets [16], but it is useful
information as part of a model over the entire search goal.

In Table 6 we see the odds-ratio of transition probabilities
to the end state in the success model compared to the failure
model. Successful goals are much more likely to transition
from search result clicks to the end state, while unsuccessful
goals are much more likely to transition from a query or a
related searches to the end state.

We can gain additional insights by looking at likely se-
quences from the Markov model. Table 7 shows some of the
most probable paths through the Markov model for success-
ful goals. We see that a single query followed by one, two or
three clicks is very likely to be successful. A reformulated
query followed by two clicks is also very likely to be success-
ful. In Table 8 we see highly probable paths through the
Markov model for unsuccessful goals. A query or a refor-
mulated query with no subsequent clicks is very likely to be
unsuccessful.

One important question is how much data is required to
train models of user search goal success. We constructed a
learning curve, shown in Figure 8, by fixing the test set size
at one tenth of the data, and varying the training set size.
We carried out ten-fold cross validation as with our previous
experiments. We see that adding more data continues to
increase the accuracy, and that accuracy is quite sensitive
to the training data. This suggests that adding more data
to this model could lead to even better results.

Our Markov model parameters are learned from our data.
As we can see from the strong cross-validation performance,
it generalizes well across diverse users and search goals. How-
ever, we tested this with only a single search engine interface.
Different interface design and distribution of result types
could lead to different transition probabilities and time dis-
tributions, which may require retraining of the model. A
question for further investigation is which elements are in-
variant to such changes and which are sensitive to it.

The classification of goal success we have described here is
part of a bigger picture of measuring and improving user sat-
isfaction with search. When we can successfully automate
the prediction of goal success, we can couple that with mea-
sures of user effort to come up with an overall picture of user

Highly probable successful paths
Q SR END
Q SR SR END
Q SR SR SR END
Q SR SR SR SR END
Q AD END
Q SC END
Q SR Q SR SR END

Table 7: Some of the highly probable successful
paths.

Highly probable unsuccessful paths
Q END
Q Q END
Q OTH END
Q SR Q END
Q Q Q END
Q RL END
Q Q SR Q SR Q END

Table 8: Some of the highly probable unsuccessful
paths.

satisfaction. Feeding these measures back into search engine
design and evaluation is our ultimate goal for improving the
user search experienced.

7. CONCLUSIONS
We have shown that training a supervised Markov model

of user behavior including the sequence of all queries and
clicks in a user search goal as well as the times between ac-
tions allows us to predict the user’s success at that goal. This
model is more accurate than predictions based on query-url
relevance as quantified in DCG. A search-goal-success based
evaluation naturally incorporates query ambiguity and di-
verse user intents underlying the same query strings, which
are conflated by traditional DCG measurements. Thus au-
tomated evaluation of search engines with search goal suc-
cess may be the path to improving search engines beyond a
plateau of optimizing relevance for the “generic user”. Cou-
pling goal success measurements with measures of user effort
(for example query formulation effort and measures of time
spent reading) will give us a complete picture of user web
search satisfaction.
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