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ABSTRACT

We describe a machine learning approach for predicting spon-
sored search ad relevance. Our baseline model incorporates
basic features of text overlap and we then extend the model
to learn from past user clicks on advertisements. We present
a novel approach using translation models to learn user click
propensity from sparse click logs.

Our relevance predictions are then applied to multiple
sponsored search applications in both offline editorial eval-
uations and live online user tests. The predicted relevance
score is used to improve the quality of the search page in
three areas: filtering low quality ads, more accurate rank-
ing for ads, and optimized page placement of ads to reduce
prominent placement of low relevance ads. We show signifi-
cant gains across all three tasks.

Categories and Subject Descriptors

H.3.3 [Information Retrieval]: Information filtering; 1.5.4
[Pattern Recognition]: Applications— Text processing

General Terms

Algorithms, Experimentation

Keywords

advertising, relevance modeling, clicks, translation

1. INTRODUCTION

Large commercial search engines typically provide organic
web results in response to user queries and then supplement
with sponsored results that provide revenue based on a “cost-
per-click” billing model. Sponsored results are selected from
a database populated by advertisers that bid to have their
ads shown on the search result page. A search engine typ-
ically decides which ads to show (and in what order) by
optimizing revenue based on the probability that an ad will
be clicked, combined with the cost of the ad [29]. Beyond se-
lecting and ranking potential ads, a search engine also must
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decide how many ads to show and how prominently (such
as above the search results, or at the side). A search engine
could likely increase short term revenue by increasing the
number and prominence of sponsored results, but such an
approach typically would reduce overall quality and eventu-
ally result in users switching to another search engine. Each
search engine chooses how aggressively to advertise based
on a balance of business goals that incorporate revenue and
estimated user impact.

While adding the perfect advertisement to a search re-
sult page may actually improve user experience, most search
engine users find that the quality of sponsored links some-
what degrade the search experience on average. Previous
work in sponsored search has primarily described modeling
clicks [29, 11], but in this work we focus on predicting ad
relevance in order to automatically identify low relevance
ads. The approach more closely resembles the typical in-
formation retrieval ranking task, which aims at predicting
document relevance (rather than directly modeling the prob-
ability that a user will click on a document). Given our pre-
dicted relevance we then proceed to alter multiple aspects
of the sponsored search system with the goal of improving
overall quality. We measure the improvement offline with
editorial analysis and online with live tests over millions of
users.

We specifically model ad relevance in order to facilitate
improving the sponsored search system. While relevance and
clicks are highly related there are important differences. Ed-
itorial assessment of relevance typically captures how related
an advertisement is to a search query, while click-through-
rate (CTR) provides a signal about if an ad is attractive. The
two measures can diverge: an ad to “Buy Coke Online” is
highly related to the search “cocacola” although the CTR is
low because very few people are interested in buying Coke
over the Internet, conversely an ad for “Coca Cola Com-
pany Job” is less related to the query but obtains a much
higher CTR in our logs because the ad is highly attractive
to users. A more drastic example is an ad to “Lose weight
now” that receives a large number of clicks independent of
what search term the ad is shown for (in most cases the
ad would be judged to have low relevance to any particu-
lar search term). Previous sponsored search work primarily
models click probabilities in order to estimate expected rev-
enue and rank candidate ads. In this work we concentrate
on additionally predicting ad relevance in order to improve
our ability assess and optimize the sponsored search system.

In Section 2 we review the sponsored search problem and
in Section 3 we describe our baseline relevance model. Sec-



tion 4 describes experiments that incorporate user clicks as
features to improve relevance modeling. Section 5 presents
results leveraging the predicted relevance score for three
sponsored search applications. Section 6 discusses related
work and Section 7 summarizes our findings.

2. REVIEW OF SPONSORED SEARCH

Search engines typically display sponsored listings on the
top (north) and the right hand side (east) of the web-search
results, in response to a user query. The revenue model for
these listings is “cost-per-click” where the advertiser pays
only if the advertisement is clicked. The advertiser “targets”
specific keyword markets by bidding on search queries. For
example, an advertiser selling shoes may bid on user queries
such as “cheap shoes”, “running shoes” and so on. Sponsored
search offers a more targeted and less expensive way of mar-
keting for most advertisers as compared to media like TV
and newspapers and has therefore gained momentum in the
recent few years, becoming a multi-billion dollar industry.

We now describe the search engine monetization (SEM)
terminology used in this paper. An advertising campaign
consists of many ad groups where each ad group in turn con-
sists of a set of bidded phrases or keywords that the adver-
tiser bids on, e.g., “sports shoes”, “stilettos”, “canvas shoes”,
etc. A creative is associated with an ad group and is com-
posed of a title, a description and a display URL. The title is
typically 2-3 words in length and the description has about
10-15 words. Clicking on an ad leads the user to the landing
page of the advertiser. An advertiser can choose to use stan-
dard or advanced match for the keywords in an ad group.
For example, enabling only standard match for the keyword
“sports shoes” will result in the corresponding creative being
shown only for that exact query. If the keyword is enabled
for advanced match, the search engine can show the same
ad for the related queries “running shoes” or “track shoes.”
A bid is associated with each keyword and a second price
auction model determines how much the advertiser pays the
search engine for the click [12].

Most search engines typically take a three-stage approach
to the sponsored search problem: (1) finding relevant ads
for a query, (2) estimating click through rate (CTR) for the
retrieved ads and appropriately ranking those ads, and (3)
selecting how to display the ads on the search page (i.e. how
many ads to show in the north section).

Finding relevant ads to a query is an information retrieval
problem and the nature of the queries makes the problem
quite similar to web search. Yet, there are some key dif-
ferences between web search and sponsored search. One of
the primary differences is that the collection of web docu-
ments is significantly larger than the advertiser database,
and retrieving candidate ads for infrequent queries is a very
important area of research for sponsored search. In addition,
sponsored results may relate to the search in a more broad
sense than would be reasonable for web results. For example
an ad for “Limo Rentals” would be relevant to a search for
“prom dress” although it would not likely be a reasonable
top organic web result.

After retrieving a set of ads {a1...a,} for a query ¢ shown
at ranks 1...n on search results page, the expected revenue
is given as:

n
R= z P(click|q,a;) x cost(q',ai,1) (1)

(3
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where cost(q’,a;,4) is the cost of a click for the ad a; at
position i for the bidded phrase ¢’. In the case of standard
match ¢ = ¢'. Most search engines rank the ads by the
product of the estimated CTR, P(click|q, a;), and bid in an
attempt to maximize revenue for the search engine. There-
fore, accurately estimating the CTR for a query-ad pair is
a very important task that has significant revenue implica-
tions. One simple approach is to use the observed historical
CTR statistics for query ad pairs that have been previously
shown to users. However, the ad inventory is continuously
changing with advertisers adding, replacing and editing ads.
Likewise, many queries and ads have few or zero past occur-
rences in the logs. These factors make the CTR estimation
of rare and new queries a challenging problem.

When a set of ads has been retrieved and ranked the search
engine must then decide how many ads to show, and where
to place the ads on the search result page. Many queries do
not have commercial intent, so displaying ads on the top of a
page for a query like “formula for mutual information” may
hurt user experience and occupy real-estate on the search
results page in a spot where a more relevant web-search re-
sult might exist. Therefore, in sponsored search, we prefer
not to show any ads when the estimate of CTR and/or rel-
evance of the ad is low. Using the same user experience
argument, for a navigational query [3] like “bestbuy.com”,
we would rather show only that particular retailer’s website
if that ad existed in the advertiser database. We refer the
reader to the study of Jansen and Resnick [14] for further de-
tails on user perceptions of sponsored search. Determining
how many candidates to retrieve and display is less crucial
in web search because the generally accepted user model
is one where users read the page in sequence and exit the
search session when their information need is satisfied. In
sponsored search the search engine must decide how many
ads to place in the north page section above the web results
as well as the total number of ads. Placing irrelevant ads
above the search results damages user experience and should
be avoided as much as possible. Likewise, placing too many
ads on a page degrades overall user experience, particularly
if low relevance ads are displayed.

3. LEARNING AD RELEVANCE MODELS

We learn a model of ad relevance that will allow us to
use use predicted relevance to improve our sponsored search
system. Our relevance model is a binary classifier trained to
detect relevant and irrelevant advertisements, given a par-
ticular search term. We experimented with Maximum En-
tropy (maxent, i.e. [22]), adaBoost Decision Tree stumps
(adaBoost, [31, 13]), and Gradient Boosting Decision Trees
(GBDT, [37]). The baseline model had 19 features: query
length plus 6x3 features that separately compared the query
to the three zones of an ad (the title, description and dis-
play url). These six features included word overlap (unigram
and bigram), character overlap (unigram and bigram), co-
sine similarity, and a feature that counted the number of
bigrams in the query that had the order of the words pre-
served in the ad zone (ordered bigram overlap). This 19
feature model forms our baseline model, additional details
are available in [26].

The target for our models was generated from editorial
data on a five point editorial scale (Perfect, Excellent, Good,
Fair, Bad), where we consider all judgments better than
“Bad” as relevant and the remaining “Bad” judgments as



irrelevant ads. Judgments are performed by professional ed-
itors that achieve reasonable consistency. Our training set
contains about 80k editorially judged query ad pairs. Our
precision and recall results for detecting relevant ads are re-
ported on an editorial test set of 40k query ad pairs. Train-
ing and test data were retrieved from our advertiser database
with a TF-IDF based ad retrieval system similar to [6] (an
average of 20 ads is retrieved per query). The data contains
7k unique queries, which were selected based on a stratified
sample of search engine traffic that represents all ten search
frequency deciles.

The results for three machine learning approaches are pre-
sented in Table 1. We compare to the baseline TF-IDF ad
retrieval system, as well as a random baseline. The random
baseline achieves the maximum F-Score by predicting all ads
as relevant, which essentially results in precision based on
the prior where about 20% of the test set is relevant. All
models outperform the baseline TF-IDF system at their Max
F-Score point, and adaBoost and GBDT are somewhat bet-
ter than the maxent model. All pairwise differences between
models (except adaBoost versus GBDT) are statistically sig-
nificant with a binomial sign test (at p < 0.01). Figure 1
illustrates the precision recall curves. For the remainder of
this work we build on the baseline GBDT relevance model,
all model tuning parameters are optimized on a separate
held-out set.

4. INCORPORATING USER CLICKS

IN RELEVANCE MODELING

Our baseline relevance model is able to predict relevance
with reasonable accuracy based on simple text overlap fea-
tures, but it will fail to detect relevant ads if no syntactic
overlap is present. An ad with the title “Find the best jog-
ging shoes” could be very relevant to a user search “running
gear” but our baseline model has no knowledge that running
and jogging are highly related. Sections 4.1 and 4.2 intro-
duce two approaches for leveraging user click data to learn
semantic relationships between queries and ads.

4.1 Click History as Relevance Features

Historical click rates for a query-ad pair can provide a
strong indication of relevance and can be used as features
in our relevance model. User click rates often correspond
well with editorial ratings when a sufficient number of clicks
and impressions have been observed. The relationship is
however not deterministic (as discussed earlier), so we al-
low the model to learn how to incorporate observed click
rates. When there is not click history for a specific query-ad
pair we can back off to higher levels that aggregate history
across all ads in an adgroup, campaign, or an entire account.
These aggregations benefit from observed click behavior on
similar ads (from the same advertiser) and have been shown
to provide significant gain in predicting click probability as
described later in Section 5.3. We include multiple different
types of aggregations that are already available to us from
other parts of the sponsored search system.

While these click history features do provide important
features, they are only available for a portion of the ads that
has seen sufficient search traffic (this accounts for less than
10% of ads in our retrieved training set at the query-ad level,
and 99% at the account level). Ads that are new to the sys-
tem or occur for infrequent tail terms will not have reliable
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Model Precision | Recall | Max F-Score
maxent 0.658 0.458 0.540
adaBoost 0.670 0.543 0.600
GBDT 0.671 0.551 0.605
TF-IDF 0.519 0.552 0.535
random 0.223 1.000 0.365

Table 1: Precision and Recall for various models on
the relevance prediction task at the maximum F-
score.

click history, so it is important to ensure that adding click
features to our relevance model does not diminish model ac-
curacy for these terms. We simulate the worst case scenario
of no available click history by training the model with click
features but then testing with the click features “blanked”
out for all test examples.

Figure 2 presents the precision-recall curves for three mod-
els: the baseline text-only model, the model with text and
click features, and the model trained with text and click fea-
tures but tested with the click features “blanked” out. The
“blanked” results indicate how the model with click features
will perform compared to the baseline model when evaluat-
ing a new or infrequent ad that has no observed click history.
Table 2 contains precision, recall, and max F-score for the
models. All pairwise differences between results are statis-
tically significant with a binomial sign test (at p < 0.01).
The addition of historical click features provides a large im-
provement in precision compared to the baseline, although
model precision is slightly degraded for the case of missing
click history.

Figure 1: Precision/Recall curves for various rele-
vance model learning approaches

4.2 Click Propensity in Query/Ad Translation

While the click features discussed in Section 4.1 are help-
ful for ads with sufficient click history, we could also use click
information to learn relationships that are not tied to a par-
ticular ad or advertiser (as the current click history features
are). Previous research has proposed modeling the query
as a translation of the document for information retrieval
[2], where the relevance of a document (in our case ad) and
query can be modeled with Bayes’ rule as:



Features Precision | Recall | Max F-Score
baseline 0.671 0.551 0.605
~+click 0.699 0.557 0.620
+blanked 0.652 0.556 0.600

Table 2: Precision and Recall for training with click
history features on the relevance prediction task.

p(D|Q) = p(QID)p(D)/p(Q) )

where p(Q) can be ignored because it is constant for each

particular query. The p(Q|D) term can be considered a

statistical translation problem and decomposed using IBM
Model 1 [8] in the form:

p(QID) = [ 3 trans(q,|d:)

§=0 i=0

®3)

for query words qo...¢m and document words do...d, where
trans(g:|d;) is a probability of co-occurrence collected over
some corpus of parallel queries and documents. The max-
imum likelihood estimations of the co-occurrence statistics
are normalized counts over the training corpus (in our case
the ad click logs, logs):

Zlogs Count(qj |dl)

- Zq Zlogs count(q|d;) (4)

The translation probability counts the number of clicks
a query-ad word pair received, divided by the total num-
ber of clicks that ad word received across all query words.
The count function can also be updated with EM itera-
tions, where the trans(q|d;) from the previous iteration
weights the co-occurrence counts. In our case we addition-
ally smooth the counts with generalized absolute discount-
ing described in [35]. Finally, the p(D) of Equation 2 can
be represented as a unigram language model, multiplying
the probabilities of the document (ad) words that are also
collected from the smoothed counts on the click logs.

We learn two translation models, where the first simply
takes the number of clicks as the co-occurrence counts. We

trans(q;|d;)

T gbdt
gbdteblanked
shdteclick

Figure 2: Precision/Recall curves when including
historical click features
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Model Precision | Recall | Max F-Score
baseline 0.671 0.551 0.605
+trans. features 0.658 0.590 0.622
+click and trans. 0.673 0.584 0.625

Table 3: Results for baseline GBDT and models
adding click likelihood translation score features and
historical click features.

then train a second model using statistics collected over
all query-ad pair impressions in the logs. Impressions are
weighted by “expected clicks” (ec) based on a rank normal-
ization [36, 10]. For an ad a at rank r that has been retrieved
for a query ¢, we define ec as:

ec(qa) = Zimp(q,a,T)P(click|r) (5)

The quantity ec(q,a) is the expected number of clicks
summed over all rank positions that an ad appears in. The
quantity P(click|r) is estimated by observing the per-position
click-through rate on a size-able portion of search traffic for
several days.

We can then take a ratio of the translation probability
from the click counts, peiicr (Q]D), divided by the probability
from the expected click counts, pe.(Q|D), to determine a
click propensity:

Petick (Q|D) (6)
Pec(Q|D)

This likelihood ratio, or click propensity, provides a score
that removes the presentation bias from the log based trans-
lation models. The peiick(Q|D) translation model, based
only on clicks, can be biased because a strong click signal
may appear from even a low click rate on a massive number
of impressions. The above likelihood ratio divides by the
probability of click that would be expected on average from
the weighted impressions, so query-ad pair will have a large
ratio when it gets more clicks than would be expected from
average term pairs.

click Likelihood =

T ghd
ghdt+trans
gbdtstranses lick

L L L L L
8.5 8.6 2.7 0.8 a.9 1
Reoall

L L L
[ 2.1 a.2 2.3 a.4

Figure 3: Precision/Recall curves when including
click likelihood translation score features and his-
torical click features.



S.  SPONSORED SEARCH APPLICATIONS

We include a translation likelihood score during relevance
model training for both translation directions, from query to
ad, and ad to query. Table 3 compares our baseline GBDT
model to a model trained with the translation click likeli-
hood scores as additional features in the model, as well as
combining with the click history features from Section 4.1.
The translation scores provide a large recall improvement
(7% relative) with some reduction in precision (2% relative).
Combining with observed click history features recovers pre-
cision while maintaining the improved recall. All pairwise
differences between results are statistically significant with
a binomial sign test (at p < 0.01).

Figure 3 shows precision-recall curves for including trans-
lation features and historical click features. The addition
of translation features provides a similar improvement when
comparing to the direct click history features. The transla-
tion scores have the additional benefit that the features gen-
eralize to query-ad pairs that do not have any click history
because the translation score is based solely on the ad text
(whereas observed click rates typically depend on a specific
ad or advertiser). When translation features are combined
with the direct historical click features we obtain a further
improvement, particularly in the higher precision region.

Section 3 introduced a baseline relevance model and Sec-
tion 4 developed improvements utilizing user clicks as fea-
tures for relevance modeling. This section briefly describes
our approach to evaluating our sponsored search system and
then reports on experiments for three applications of lever-
aging predicted relevance to improve sponsored search.

5.1 System Evaluation

Evaluation of a live search system can be complicated and
ambiguous. The large amount of user traffic means that
human judgments are intractable for any significant portion
of the data. Alternatively, statistics collected over millions
of user interactions are available and can provide significant
insights into the impact of an experimental approach (but
logs can include noise from spam and other sources). A
complete analysis typically incorporates editorial judgments
by humans over a small sample of the data, combined with
measurements of user behavior such as click rates. We have
access to a platform that allows us to run our experimental
system live on a fraction (or “bucket”) of traffic for a large
commercial search engine.

We can estimate measures that indicate the quality of the
individual systems by analyzing the logs for a large num-
ber of page-views generated from our experimental system
and comparing to a baseline system. Additionally, because
in “pay-per-click” advertising the desired goal of the search
engine is user-clicks on ads, metrics from “bucket-testing”
can help evaluate the monetization capability of the new al-
gorithm. For an introduction to bucket testing the reader
is referred to the paper by Kohavi et al [18]. In this paper
we report bucket test results for experiments in three spon-
sored search applications. The relevance model deployed in
the buckets does not use the translation model described in
section 4.2 for reasons of computational efficiency and la-
tency.

5.2 Filtering low quality ads

As described in Section 2, the goal of the initial stage of
most sponsored search systems is to retrieve a candidate set
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Metric Relative Change
Clicks per candidate set (CTR) +10.1%
Queries with ads (coverage) -8.7%

Ads per query (depth) -11.9%
Clicks per search (Click Yield) +0.5%

Table 4: Bucket metrics for relevance filtering.

Editorial Rating | Total Ads | Filtration Rate
Perfect 267 3% (8)
Excellent 206 8% (17)
Good 3888 8% (306)
Fair 10912 17% (1849)
Bad 8526 49% (4215)

Table 5: Filtration rates per editorial category.

of relevant ads for a particular search query. The set of can-
didate ads is a pool generated by various retrieval technolo-
gies that rely on query rewriting methods as well as direct
ad retrieval such as the approaches described in [1]. In order
to improve the relevance of the final candidate set we will
apply our relevance model to each query-ad pair in the can-
didate set and prune those ads that do not meet a relevance
threshold. Table 4 presents the results of a live bucket test
that applies the relevance model online to all candidate ads,
removing those ads that do not meet a relevance threshold.

The filter significantly reduced the number of ads dis-
played to the user, with an 8.7% reduction in queries with
ads (coverage) and an 11.9% reduction in the average num-
ber of ads per search query. Even with this large reduction in
the number of ads the average clicks per search was neutral
to slightly positive, which indicates most all of the removed
ads received few clicks in the baseline production bucket.
Cutting the number of ads shown while maintaining con-
stant total clicks is also indicated by the 10% increase in
click through rate.

While click metrics give some indication of how well our
relevance model filtering is performing, we are primarily in-
terested in reducing low relevance ads. An online test has
too many events to measure everything editorially, so we
also sampled five thousand random queries from the bucket
and gathered an editorial evaluation of the query ad pairs.
Applying our relevance filter to this set we can determine
what percentage of ads are filtered for each editorial grade.
Table 5 illustrates that our filter eliminates about half of
all bad ads, with marginal impact on the higher quality
ads. The combined impact is a significant reduction in total
ads (identified editorially as primarily low relevance) along
with maintaining constant to positive overall clicks, which
together should indicate an improved user experience.

5.3 Ranking ads with low click history

As noted in Section 2, ads with little observed click his-
tory are difficult to rank by probability of click. In this sec-
tion we incorporate the predicted ad relevance as a feature
in ranking with the intention of improving click prediction
(particularly when little click history is available). Ads are
ranked by a machine learned model that predicts the prob-
ability that the user is likely to click on an ad for a query,



p(click|query, ad). We learn a maximum entropy model for
this task, which has the following functional form:

1
T 1+ eap(Z, wifi)

where f; denotes a feature based on either the query, the
ad, or both and w; is the weight associated with the fea-
ture. The model is described in more detail in the work of
Shaparenko et al. [33] and is learned from the query click
logs. Each line in the query log contains a query and an
ad, whether the ad was clicked, and other information such
as the time-stamp and the position on the page that the
ad was shown to a particular user. This data is used to
train a binary classifier using the maximum entropy model
as described above.

While any supervised classification algorithm may have
been used (eg., [29, 11]) the learning framework for maxi-
mum entropy has been efficiently parallelized using Hadoop
to handle billions of training samples. Maximum entropy

(7)

p(click|query, ad)

models can also handle sparse and mutually correlated feature-

sets reasonably well. The primary features for the model are
various levels of historical click aggregation, which are sup-
plemented by additional features such as time of day, as well
as some simple syntactic overlap features which are a similar
to those used in the relevance model described in Section 3.

The ranking model is typically evaluated offline with anal-
ysis of precision/recall curves, where the test events are hun-
dreds of millions of click and non-click events from the search
logs. Model performance is very accurate when sufficient
click history is available (because future clicks track past
click behavior very closely). The task is more challenging
when little or no click history is available for an ad, such
as the case of a newly created ad or an ad for a very infre-
quent tail search. This problem can be partially approached
by inferring click history information from the ad database
hierarchy, such as the average click history for all of the ads
from a particular account. But, when absolutely no click his-
tory is available the model must predict the probability of a
click given the remaining features, such as overlap between
query and display url or query and ad title.

Our baseline relevance model can predict relevance inde-
pendent of click history, so we can include the relevance score

Figure 4: Click prediction precision/recall curve for
events with no account level click history.
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Click history levels
None Low History High History
Rankl CTR | +0.1% | +12.7% (p < 0.05) | -0.5%
Rank2 CTR | +2.8% | +16.9% (p < 0.1) | +1.3%
Table 6: Bucket results for click ranking.

as an additional feature input to the model. We compare
the performance of the baseline click ranking model with
a ranking model that incorporates the predicted relevance
as a feature. Figure 4 evaluates events that had no account
level click history (1.2% of test data), and Figure 5 evaluates
events with no adgroup level history (3.6% of test data). We
find that including the relevance score as a feature provides
useful gains in both settings for the high precision regions,
indicating that the top ranking ads are ranked more accu-
rately. Precision for these ads improves by more than 20%
(relative) for events with no adgroup level history. The “area
under the curve” improved by 3.5% (relative) for events with
no adgroup history, and improved by 5% (relative) for events
with no account history. The results on the remainder of the
test set, where sufficient click history is available, were un-
changed from the baseline click ranking model.

We also conducted a bucket test to compare the click
model that uses the relevance model score as feature to the
baseline model. Table 6 compares the CTRs of these two
models on query slices with varying click history aggregates.
We present the results for only the top 2 positions because
the sample sizes for the lower positions were not big enough
to show any significant changes. The results are presented
per position so that there is no presentation bias in the re-
sulting click rates.

The model that includes predicted relevance as a feature
has increased both rank 1 and rank 2 CTRs significantly,
by 12.74% and 16.68% respectively, for the low query his-
tory slice. We did not observe any changes for the queries
that already had sufficient historical information. Note that
these findings were predicted by our offline analysis pre-
sented above. Surprisingly, we did not see the improvements
that were predicted for the query slice with no history at all.
This may be due in part to the small sample size collected

Figure 5: Click prediction precision/recall curve for
events with no adgroup level click history.



for this set of queries and in part to the nature of the queries
themselves. The absolute number of clicks for these queries
are comparatively much smaller, suggesting that either these
queries are not commercial or that the ad set was not at-
tractive enough to begin with.

5.4 Reducing North Ad Impact

Given a ranked set of candidate ads, the final stage of
sponsored search should decide how many ads to place in
the north above the organic search results. Placing adver-
tisements on top of the organic search results (rather than to
the side in the east) creates a direct competition between ads
and search results. For commercial search terms ads can be
more attractive than web results. More frequently, however,
they can divert the user’s attention and might keep them
from ultimately reaching pages containing the information
they requested. The search engine can deliberately incur
degradation of user experience in exchange for expected rev-
enue. Ads not shown in the north can still be shown in the
east or in the south; however, the bulk of both user expe-
rience impact and revenue stems from north ads because of
their prominent position on the page. One way of measur-
ing search retrieval quality that has become somewhat of
a standard is the Discounted Cumulative Gain (DCG) [15].
This is a weighted sum of the editorial relevance (according
to human judges) of the top returned documents, where the
weight is a decreasing function of the rank:

DCG, = Zn:wz -rel;

=1

(8)

This formula is typically used with graded relevance scores,
and weights that place much more importance on higher
ranks (we use 1/logz(rank + 1)). When ads placed above
the search results degrade overall quality the degradation
can be measured as North Ad Impact (NAI), the percent
decrease in DCG introduced by displaying ads:

DCGnoAds — DCGwithAds (9)
DCGnoAds

The DCGroa4s computes DCG over the top five organic
search results, while DCGyithaqas computes DCG over the
top five results including ads (for instance with 3 north ads
DCG is computed over the 3 ads and the top two organic
search results). We can attempt to reduce NAI in our spon-
sored search system by estimating DCG before and after
potential north ad placements and choosing to place ads in
the north where we incur the lowest NAI penalty (gener-
ally when ad relevance is higher and web relevance is lower).
The ad DCG score is estimated with our relevance model
and the search engine ranking score estimates the organic
search DCG score.

The baseline ad relevance model was trained for the binary
relevant vs. irrelevant task, but for page placement we desire
a prediction of the editorial relevance score that is a five
point non-linear scale. Therefore we retrain the relevance
model as in Section 4.1, but using GBDT regression on the
corresponding editorial point value for each grade as the
target, rather than a binary good versus bad target (so as
to predict on the same scale as the estimated organic result
relevance). Finally, we can estimate the NAI of placing any
ad in the north by comparing the predicted ad and web
relevance scores.

NAI =
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Metric Relative Change
Editorial NAT -4.5%
North Click Through Rate +1.7%
Click Yield +.8%

Table 7: Bucket metrics using estimated NAI in
north ad placement.

Sponsored search is typically allocated a fixed number of
average north ads per query (based on revenue considera-
tions) and then chooses when to place ads in the north for a
particular query by optimizing some criteria. Our baseline
system optimizes north ad placement based on a combina-
tion of maximum revenue (the probability of click times the
advertiser bid) and user cost (a penalty for low quality ads).
Ads are ordered by the optimization function and are then
placed in the north if their score is above a threshold that
produces an average quota of north ads. Table 7 presents
bucket results for an alternative page placement strategy
that incorporates our predicted NAI impact as the user cost,
where the baseline system uses a function of the estimated
p(click|query, ad).

By incorporating an estimate of NAI directly in the opti-
mization function we are able to place the same quantity of
ads in the north, but with a lower impact on the user because
we bias towards higher relevance ads (and take the web re-
sult relevance into consideration). The bucket results show
good improvement (reduction) in NAI along with a corre-
sponding increase in north ad CTR and click yield, which
are additional measures of user satisfaction. The NAI re-
sults are calculated based on editorial assessment over one
thousand randomly sampled queries, for which both north
ads and organic search results are judged.

6. RELATED WORK

Work in online advertising focuses on two main areas: con-
textual advertising and sponsored search. Sponsored search
has been described in detail in section 2. Contextual adver-
tising is a similar problem that mainly concerns itself with
the placement of ads on publisher pages, such as news pages
or blogs. Research in these two areas is related to our work,
as are many topics in traditional information retrieval.

Several methods that use supervised learning techniques
with data labeled on an ordinal scale to learn a classifier or a
ranking function have been proposed (e.g., [21, 9]). In spon-
sored search however, most of the approaches published in
the literature so far have either taken a traditional informa-
tion retrieval approach (e.g., [7]) or one that learns a classi-
fier based on click data (e.g., [29, 11, 32]). To our knowledge
this work is the first to show the benefit of modeling human-
assessed relevance for many tasks in sponsored search. We
find that our model can improve performance compared to
a baseline TF-IDF framework. We also find that modeling
human-judged relevance can even improve a classifier that
predicts click-through-rate, especially on the slice of traffic
for which little historical impression data exists. Finally, we
find that our model can be used to filter low quality ads
and to reduce North Ad Impact, resulting in improved user
experience.

While filtering has been well studied in information re-
trieval [20], little work has been done in the context of web-



search and ads in particular. Perhaps, the most closely re-
lated work is that of Broder et al. [4] who trained a classifier
for a similar problem: given a query and a slate of ads,
they predicted whether or not to show advertisements for
the query. Our classifier on the other hand predicts whether
or not to show the ad for a query-ad pair. In comparison
with Broder et al[4], our work explores several models and
our evaluation is on a data-set that is several times larger,
and we also evaluate on live traffic.

In contextual advertising publisher pages are rich in con-
tent and a rich set of features can typically be extracted
from the web-page and used to find relevant ads [5, 34]. The
sponsored search problem on the other hand suffers from the
same problem as web-search, where the queries are short and
have little context. Exacerbating the problem is the fact that
the ad document is short with little context as well. One
way of overcoming this problem is though “query rewrit-
ing” techniques. The transformed query is then used for
ad retrieval. Models to predict query rewriting techniques
may be learned from query logs [17, 25]. An alternate way
of overcoming the issues posed by matching documents to
short queries is query expansion, a technique well studied in
information retrieval [30, 19]. Ribeiro-Neto et al. [28] found
expanding the content of publisher pages to be useful to the
problem of contextual advertising. Likewise, query expan-
sion has been found to be beneficial in sponsored search [7,
27]. Incorporating topic clusters or hierarchical categorical
features has also provided improvements [32].

Many systematic frameworks for query expansion exist in
information retrieval. In this paper we chose the translation
models of Berger and Lafferty [2] since several recent works
[16, 23] have found this framework useful for tasks where the
documents to be retrieved are very short. While Jeon was
attempting a Q&A retrieval task, Murdock was attempting
a sentence retrieval task. Murdock et al. [24] also applied
the translation model approach to contextual advertising.
They computed translation models between a small set of
publisher pages and landing pages by using a parallel corpus
determined by human judgments.

We presented a variation of the translation models in
which the translations are trained using billions of events
from our click logs. Our translation models can easily be
automatically computed from search engine logs and there-
fore our method is more robust to seasonal variations in the
vocabulary of commercial terms (and can be collected over
corpuses many orders of magnitude larger than most pre-
vious work). A similar method was proposed by Raghavan
and Iyer [27]. However, their translation model was a sim-
ple list of co-occurring words in clicked query-ad pairs. In
contrast our method uses click frequency while normalizing
by position normalized impressions. Other related work has
found gains from incorporating word pair features directly
as features in a sponsored search click prediction model [33].

7. CONCLUSIONS

We have presented a baseline relevance model that ac-
curately predicts relevance for query-ad pairs, and addition-
ally improved that model by incorporating implicit relevance
feedback from sparse user clicks in search logs. We found
that observed click history is helpful in predicting relevance
when sufficient observations are available. When few or no
observations are available, we described a method for learn-
ing a translation model from click logs that can generalize
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to unseen ads by relying on the ad text. Both approaches
provide significant improvements to the task of predicting
relevance.

We then applied our relevance model to three major com-
ponents of a sponsored search system: ad retrieval, ad rank-
ing, and page placement. Both offline editorial evaluation
and online bucket metrics show significant relevance im-
provements across all three tasks. Future work could extend
estimation of translation models to include text from organic
web results, as well as incorporating topical and categorical
features.
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